Effect of Injectable Bone Substitute Preparation Formulation on Microscopic and Macroscopic Characteristics for Bone Graft

Penulis

  • M. Mukaddam Alaydrus Universitas Mataram
  • Susi Rahayu Universitas Mataram
  • Dyah Purnaning Universitas Mataram
  • Maz Isa A.A Universitas Mataram
  • Awanda Oktri P Universitas Mataram
  • Ahmad Taufik S Universitas Mataram

DOI:

https://doi.org/10.52434/jifb.v16i2.42506

Kata Kunci:

chitosan, hydroxyapatite, injectable bone substitute, polyvinyl alcohol, shell waste

Abstrak

Biocompatible, mechanically stable, and easy-to-use injectable biomaterials are often needed for bone defects caused by trauma, disease, or surgery. This study aims to investigate the effect of polyvinyl alcohol (PVA) concentration on the microscopic and macroscopic characteristics of injectable bone substitute (IBS) formulations composed of Hydroxyapatite (HAp), chitosan, and PVA. The biopolymer chitosan was extracted from pearl oyster shell waste (Pinctada maxima), and HAp was synthesized via precipitation. The formulations were prepared with varied PVA concentrations (5%, 10%, and 15%) and evaluated for their structural, physicochemical, and functional properties. Fourier-transform infrared (FTIR) spectroscopy was employed to determine the presence of functional groups and molecular interactions. Results showed that increasing PVA content enhanced the intensity and sharpness of phosphate () bands, with Sample C (15% PVA) exhibiting the strongest interaction, indicated by a peak shift to 1047.32 cm⁻¹. Organoleptic observations revealed stable color across all samples, with increasing viscosity and paste-like consistency observed in higher PVA concentrations. Sample C had the highest viscosity (82.2 dPa·s) and the lowest injectability (92.43%), while Sample A exhibited the highest injectability (98.33%) and the lowest viscosity (2.79 dPa·s). Sample B (10% PVA) showed balanced characteristics with a viscosity of 38.93 dPa·s and injectability of 97.26%, aligning closely with ideal ranges for injectable biomaterials. Density measurements indicated that all samples approximated or exceeded the minimum density of healthy bone, with Sample C reaching 1.18 g/cm³. pH monitoring over 21 days revealed a consistent value of ~6, suggesting good chemical stability. These results demonstrate that the 15% PVA formulation achieves an optimal compromise between physicochemical properties and clinical applicability. This composite's injectability enables precise defect filling and promotes new bone formation, making it a superior and promising alternative as an injectable bone graft material in patients.

Biografi Penulis

Susi Rahayu, Universitas Mataram

Physics departement

Dyah Purnaning, Universitas Mataram

Departement of Medical Sciences

Maz Isa A.A, Universitas Mataram

Departement of Clinical Medicine

Awanda Oktri P, Universitas Mataram

departemen of physics

Ahmad Taufik S, Universitas Mataram

Departement of Medical Sciences

Referensi

1. Puranto P, Kamil MP, Suwondo KP, Mellinia AD, Avivin AN, Ulfah IM, et al. Unveiling the pH influence: Enhancing hydroxyapatite-coated titanium biomedical implants through electrochemical deposition. Ceram Int. 2024;50(8):13412–21.

2. Rahayu S, Kurniawidi DW, Gani A. Pemanfaatan limbah cangkang kerang mutiara (Pinctada maxima) sebagai sumber hidroksiapatit. J Pendidik Fis dan Teknol. 2018;4(2):226–31.

3. Alimuddin, Rahayu S. Eksplorasi limbah hidroksiapatit tulang sapi sebagai sumber biomaterial. Kappa J. 2022;6(2):357–65.

4. Rana M, Akhtar N, Rahman S, Jamil HM, Asaduzzaman SM. Extraction of hydroxyapatite from bovine and human cortical bone by thermal decomposition and effect of gamma radiation: A comparative study. Int J Complement Altern Med. 2017;8(3):1–10.

5. Siswanto, Hikmawati D, Hariyanto M. Synthesis of hydroxyapatite based on coral Banyuwangi using sol-gel method: Observe the effect of calcination temperature on its phase and crystallinity. In: Journal of Physics: Conference Series. 2019. p. 1–5.

6. Supangat D, Cahyaningrum SE. Synthesis and characterization of hydroxyapatite of crabs shell (Scylla serrata) by wet application method. UNESA J Chem. 2017;6(3):143–9.

7. Zhang H, Cheng J, Ao Q. Preparation of alginate-based biomaterials and their applications in biomedicine. Vol. 19, Marine Drugs. 2021. p. 1–24.

8. Zhang H, Wu X, Quan L, Ao Q. Characteristics of marine biomaterials and their applications in biomedicine. Vol. 20, Marine Drugs. 2022. p. 1–32.

9. Dwivedi R, Kumar S, Pandey R, Mahajan A, Nandana D, Katti DS, et al. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. Vol. 10, Journal of Oral Biology and Craniofacial Research. 2020. p. 381–8.

10.Kurniawidi DW, Alaa S, Nurhaliza E, Safitri DO, Rahayu S, Ali M, et al. Synthesis and characterization of nano chitosan from vannamei shrimp shell (Litopenaeus vannamei). J Ilm Perikan dan Kelaut. 2022;14(2):380–7.

11.Nurlaili N, Alaa S, Rahayu S. Modifikasi teknik isolasi biopolimer kitosan dari cangkang kerang mutiara (Pinctada maxima) sebagai adsorben zat warna metilen blue. ORBITA J Pendidik dan Ilmu Fis. 2022;8(2):268–73.

12.Nurmaulida SE, Alawiyah G, Rahayu S, Taufik S A, Hidayatullah K, Kurniawidi DW, et al. Fabrication of chitosan biopolymer from pearl oyster shells (Pinctada maxima) for medical applications. Indones Phys Rev. 2023;6(2):240–9.

13.Hartatiek, Yudyanto, Wuriantika MI, Utomo J, Nurhuda M, Masruroh, et al. Nanostructure, porosity and tensile strength of PVA/hydroxyapatite composite nanofiber for bone tissue engineering. In: Materials Today: Proceedings. 2021. p. 3203–6.

14.Hartatiek, Fathurochman F, Wuriantika MI, Yudyanto, Masruroh, Djoko Herry Santjojo DJ, et al. Mechanical, degradation rate, and antibacterial properties of a collagen-chitosan/PVA composite nanofiber. Mater Res Express. 2023;10(2):1–10.

15.Hartatiek, Wuriantika MI, Amalia S, Masruroh, Yudyanto, Nurhuda M, et al. Surface modification of PVA/Chitosan/PEG/HAp nanofiber scaffolds by plasma treatment and studies of their morphology, wettability, and biodegradation rate. Adv Nat Sci Nanosci Nanotechnol. 2023;14(2).

16.Hartatiek, Yudyanto, Nada Shofura F, Utomo J, Nurhuda M, Santjojo DJDH, et al. Morphology, porosity, and biodegradation of PVA/CS/PEG/HaP nanofiber composites as scaffold in bone tissue engineering. In: AIP Conference Proceedings. 2020. p. 1–6.

17.Hartatiek H, Yudyanto Y, Rahim LF, Amalia S, Nurhuda M, Masruroh M, et al. Morphology, porosity, and biodegradation of PVA/PEG/Chitosan nanofiber scaffolds for skin tissue engineering. In: AIP Conference Proceedings. 2023. p. 1–6.

18.Rahayu S, Masruroh M, Santjojo DJD., Septiani N, Wirawan R. Isolation and characterization of chitosan from nacre of the oyster pearl shell (Pinctada maxima) as biopolimer. In: Journal of Physics: Conference Series. 2025. p. 1–10.

19.Maulida HN, Hikmawati D, Budiatin AS. Injectable bone substitute paste based on hydroxyapatite, gelatin and streptomycin for spinal tuberculosis. J Stem Cell Res Tissue Eng. 2019;3(2):56–66.

20.Asrori, Susilo SH, Yudiyanto E, Gumono. Mekanika fluida dasar. CV. Penerbit Qiara Media; 2021.

21.Pratiwi SH, Sari M, Yusuf Y. Characterization of PVA/Chitosan and tuna fish bones CHA scaffold for bone tissue engineering. Adv Mater Res. 2024;1179:3–10.

22.Firnanelty, Sugiarti S, Charlena. Synthesis of HAp-chitosan-PVA composite as injectable bone substitute material. Rasayan J Chem. 2017;10(2):570–6.

23.Dinatha IKH, Diputra AH, Wihadmadyatami H, Partini J, Yusuf Y. Polyvinyl alcohol/polyvinylpyrrolidone/chitosan nanofiber scaffold with hydroxyapatite from sand lobster shells (Panulirus homarus) for bone tissue engineering. E3S Web Conf. 2024;521:1–7.

24.Wang J, Wang X, Liang Z, Lan W, Wei Y, Hu Y, et al. Injectable antibacterial Ag-HA/GelMA hydrogel for bone tissue engineering. Front Bioeng Biotechnol. 2023;11:1–13.

25.Putra AP, Hikmawati D, Budiatin AS. Injectable bone substitute of hydroxyapatite-gelatin composite with alendronate for bone defect due to osteoporosis. J Int Dent Med Res. 2019;12(2):813–8.

Diterbitkan

2025-07-31

Artikel Serupa

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.