Studi Kompatibilitas Kurkumin terhadap Eksipien Basis Effervescent
DOI:
https://doi.org/10.52434/jifb.v16i2.42583Keywords:
basis effervescent, eksipien, inkompatibilitas, kompatibilitas, kurkuminAbstract
Kurkumin merupakan senyawa aktif yang memiliki berbagai manfaat farmakologis, namun keterbatasan kelarutannya dalam air menjadi pertimbangan dalam pengembangan sediaan, salah satunya dengan menggunakan basis effervescent. Penelitian ini bertujuan untuk mengevaluasi potensi inkompatibilitas antara kurkumin dan beberapa eksipien effervescent, yaitu asam sitrat, asam tartrat, dan natrium bikarbonat. Metode penelitian meliputi uji homogenitas, organoleptik, mikroskopik, kadar air (LOD), kristalinitas, dan sifat termal. Campuran dibuat dengan perbandingan 1:1 menggunakan mixer selama 10 menit dengan kecepatan 60 rpm. Hasil menunjukkan adanya variasi dalam homogenitas, perubahan fisik, kadar air, dan karakteristik termal pada masing-masing campuran. Secara umum, campuran kurkumin dengan asam tartrat dan natrium bikarbonat menunjukkan kestabilan yang relatif baik dibandingkan dengan campuran yang mengandung asam sitrat, yang menunjukkan beberapa perubahan selama penyimpanan. Kesimpulan penelitian menunjukkan bahwa asam tartrat merupakan basis effervescent yang paling kompatibel untuk formulasi sediaan kurkumin, sedangkan asam sitrat menunjukkan potensi inkompatibilitas.
References
1. Sharifi-Rad J, Rayess Y El, Rizk AA, Sadaka C, Zgheib R, Zam W, et al. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol. 2020;11:1–23.
2. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Vol. 4, Molecular Pharmaceutics. 2007. p. 807–18.
3. Patel SG, Siddaiah M. Journal of drug delivery and therapeutics formulation and evaluation of effervescent tablets : a review. J Drug Deliv Ther. 2018;8(6):296–303.
4. Gohel MC, Parikh RK, Brahmbhatt BK, Shah AR. Preparation and assessment of novel coprocessed superdisintegrant consisting of crospovidone and sodium starch glycolate: a technical note. AAPS PharmSciTech. 2007;8(1):E1–7.
5. Bharate SS, Bharate SB, Bajaj AN. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. Vol. 1, Journal of Excipients and Food Chemicals. 2010. p. 3–26.
6. Jamwal R. Bioavailable curcumin formulations: A review of pharmacokinetic studies in healthy volunteers. Vol. 16, Journal of Integrative Medicine. 2018. p. 367-374.
7. Nugraha F, Kurniawan H, Yastiara I. Penetapan kadar paracetamol dalam jamu di Kota Pontianak menggunakan instrumen spektrofotometri UV-Vis. Indones J Pharm Educ. 2023;3(1):77–87.
8. Sahara Y, Rahmat SD, Rahmawati SR, Firmansyah A, Sundalian M. Penentuan kelarutan kurkumin dalam delapan pelarut organik guna pengembangan sediaan farmasi berbahan dasar kurkumin menggunakan spektrofotometri visible dan gravimetri. J Sains dan Teknol Farm Indones. 2023;12(2):114–25.
9. Setiana IH, Satria A, Kusuma W. Review jurnal: Formulasi granul effervescent dari berbagai tumbuhan. Farmaka Suplemen. 2018;16(3):100–5.
10.Imanto T, Pertiwi HK, Wikantyasning ER. Pembentukan dan karakterisasi fisika kimia ko-kristal piroxicam-asam tartrat-sakarin dengan metode solvent drop grinding. J Islam Pharm. 2023;8(2):89–95.
11.Kumalasari ID, Larasati A. Karakteristik organoleptik dan fisikokimia minuman serbuk daun kersen (Muntingia calabura) dan daun binahong (Anredera cordifolia) dengan pemanis stevia. J Agroindustri. 2023;13(1):71–84.
12.Rachmaniar R, Warya S, Nurgeofani PP. Karakterisasi kokristal krud mangostin (Garcinia mangostana, L.) hasil metode liquid assisted grinding menggunakan koformer asam sitrat. J Sains dan Teknol Farm Indones. 2023;12(1):15–29.
13.Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091–112.
14.Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold. Vol. 595, Advances in Experimental Medicine and Biology. 2007. p. 1–75.
15.ICH. ICH Topic Q2 (R1) validation of analytical procedures : text and methodology. Vol. 17, International Conference on Harmonization. Geneva; 2005.
16.Rohmah SAA, Muadifah A, Martha RD. Validasi metode penetapan kadar pengawet natrium benzoat pada sari kedelai di beberapa kecamatan di Kabupaten Tulungagung menggunakan spektrofotometer UV-Vis. J Sains dan Kesehat. 2021;3(2):120–7.
17.Fatmawati A, Emelda E, Elvana A. Optimasi formula pada granul paracetamol dengan variasi komposisi bahan pengisi laktosa dan avicel PH 101 serta evaluasi parameter kadar lembab moisture content dan loss on drying. INPHARNMED J (Indonesian Pharm Nat Med Journal). 2021;4(1):25–32.
18.Nuralisa RA, Zakiyah N. Review artikel: Studi kompatibilitas obat-eksipien dengan analisis termal. J Farmaka. 2022;20(2):17–25.
19.Bridgwater J. Mixing of powders and granular materials by mechanical means - A perspective. Vol. 10, Particuology. 2012. p. 397–427.
20.Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients 6th ed.(2009) - (Malestrom). 6th ed. Handbook of Pharmaceutical Excipients. London: Pharmaceutical Press; 2009. 888 p.
21.Chen L, Subirade M. Chitosan/β-lactoglobulin core-shell nanoparticles as nutraceutical carriers. Biomaterials. 2005;26(30).
22.Callahan JC, Cleary GW, Elefant M, Kaplan G, Kensler T, Nash RA. Equilibrium moisture content of pharmaceutical excipients. Drug Dev Ind Pharm. 1982;8(3):355–69.
23.Sharma RA, Gescher AJ, Steward WP. Curcumin: The story so far. Eur J Cancer. 2005;41(13):1955–68.
24.Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: Solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1–2):127–135.
25.Ahlneck C, Zografi G. The molecular basis of moisture effects on the physical and chemical stability of drugs in the solid state. Vol. 62, International Journal of Pharmaceutics. 1990. p. 87–95.
26.Nasser GA. Kunyit sebagai agen anti inflamasi. Wellness Heal Mag. 2020;2(1):147–58.
27.Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.
28.Rodriguez‐Spong B, Price CP, Jayasankar A, Matzger AJ, Rodriguez‐Hornedo N. General principles of pharmaceutical solid polymorphism. a supramolecular perspective. ChemInform. 2004;35(37):241–74.
29.Sanphui P, Goud NR, Khandavilli UBR, Bhanoth S, Nangia A. New polymorphs of curcumin. Chem Commun. 2011;47(17):5013–5015.
30.Serajuddin ATM. Salt formation to improve drug solubility. Vol. 59, Advanced Drug Delivery Reviews. 2007. p. 603–16.
31.Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.
32.Knopp MM, Tajber L, Tian Y, Olesen NE, Jones DS, Kozyra A, et al. Comparative study of different methods for the prediction of drug-polymer solubility. Mol Pharm. 2015;12(9):3408–19.
33.Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Vol. 231, International Journal of Pharmaceutics. 2002. p. 131–44.
34.Xie H, Ma L, Li Y, Fu J, Li Z, Yu X, et al. Preparation and characterizations of curcumin protection and delivery system using linear dextrin. Compounds. 2022;2(4):353–66.
35.Patel HK, Chauhan P, Patel KN, Patel BA, Patel PA. Formulation and evaluation of effervescent tablet of paracetamol and ibuprofen. Int J Pharm Res Sch. 2012;1(2):311–315.
36.Morris KR, Griesser UJ, Eckhardt CJ, Stowell JG. Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes. Adv Drug Deliv Rev. 2001;48(1):91–114.
37.Byrn SR. Solid-state chemistry of drugs : 2nd edition. 2nd ed. Ssci Inc; 1999. 574 p.
38.Waterman KC, Adami RC. Accelerated aging: Prediction of chemical stability of pharmaceuticals. Int J Pharm. 2005;293(1–2):101–125.
39.Pikal MJ, Dellerman KM. Stability testing of pharmaceuticals by high-sensitivity isothermal calorimetry at 25°C: cephalosporins in the solid and aqueous solution states. Int J Pharm. 1989;50(3):233–252.
40.Shalaev EY, Zografi G. How does residual water affect the solid-state degradation of drugs in the amorphous state? Vol. 85, Journal of Pharmaceutical Sciences. 1996. p. 1137–41.
41.Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal. 1997;15(12):1867–1876.
42.Khankari RK, Grant DJW. Pharmaceutical hydrates. Thermochim Acta. 1995;248(C):61–79.
43.Ford JL, Timmins P. Pharmaceutical thermal analysis: techniques and applications (ellis horwood books in information technology). John Wiley & Sons; 1989. 313 p.
44.Zografi G, Crowley KJ. Cryogenic grinding of indomethacin polymorphs and solvates: Assessment of amorphous phase formation and amorphous phase physical stability. J Pharm Sci. 2002;91(2):492–507.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Farmako Bahari

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
or all articles published in Jurnal Ilmiah Farmako Bahari, the copyright is retained by the journal. Articles are published under the terms of Creative Commons Attribution-ShareAlike 4.0 International License (CC-BY-SA 4.0) . For Authors:
|
Download Journal Template
.png)








