Pengaruh Terpaan Informasi Media Sosial Terhadap Tingkat Kepercayaan Publik Pada Pemilihan Umum 2024
DOI:
https://doi.org/10.52434/jk.v10i2.4199Abstrak
Abstract
In today's digital era, social media has become one of the main platforms for communication and sharing information. In a political context, social media becomes important as a place for campaigns, debates and dissemination of political information. The aim of this research is to explore the influence of exposure to social media information on the level of public trust in the 2024 general election (election). The research question asked is how exposure to social media information influences the level of public trust in the 2024 general election (election). is a quantitative approach with surveys using Google Forms to collect data. The population studied were young people aged 17-25 years in Pekanbaru City. The number of samples was determined using the Isaac and Michael method with an error rate of 10%. The research results show that all 12 statements for the variable information exposure and level of public trust are considered valid because the correlation coefficient value is greater than the table correlation value. Reliability testing shows that the two variables are considered reliable because the Cronbach's Alpha value is greater than 0.6. Normality test analysis shows that the data has a normal distribution because the Asymp value. Sig. greater than 0.05. A simple linear regression test shows a correlation between the independent variable (exposure to social media information) and the dependent variable (level of public trust in the 2024 general election), with a certain regression equation. The results of the T test show rejection of the null hypothesis and acceptance of the alternative hypothesis because the t-count value is smaller than the t-table, and the significance level is smaller than alpha.
Keywords: Social Media; Public Trust; Information Exposure; 2024 Election
Abstract
Dalam era digital saat ini, media sosial telah menjadi salah satu platform utama untuk komunikasi dan berbagi informasi. Dalam konteks politik, media sosial menjadi penting sebagai tempat kampanye, debat, dan penyebaran informasi politik. Tujuan dari penelitian ini adalah untuk mengeksplorasi pengaruh terpaan informasi media sosial terhadap tingkat kepercayaan publik pada pemilihan umum (pemilu) 2024. Pertanyaan penelitian yang diajukan adalah bagaimana terpaan informasi media sosial memengaruhi tingkat kepercayaan publik pada pemilihan umum (pemilu) 2024. Metode penelitian yang digunakan adalah pendekatan kuantitatif dengan survei menggunakan Google Forms untuk mengumpulkan data. Populasi yang diteliti adalah anak muda berusia 17-25 tahun di Kota Pekanbaru. Jumlah sampel ditentukan dengan metode Isaac dan Michael dengan tingkat kesalahan sebesar 10%. Hasil penelitian menunjukkan bahwa semua 12 pernyataan untuk variabel terpaan informasi dan tingkat kepercayaan masyarakat dianggap valid karena nilai koefisien korelasi lebih besar dari nilai korelasi tabel. Pengujian reliabilitas menunjukkan bahwa kedua variabel tersebut dianggap reliabel karena nilai Cronbach’s Alpha lebih besar dari 0,6. Analisis uji normalitas menunjukkan bahwa data memiliki distribusi normal karena nilai Asymp. Sig. lebih besar dari 0,05. Uji regresi linear sederhana menunjukkan adanya korelasi antara variabel independen (terpaan informasi media sosial) dan variabel dependen (tingkat kepercayaan publik pada pemilihan umum (pemilu) 2024), dengan persamaan regresi tertentu. Hasil uji T menunjukkan penolakan hipotesis nol dan penerimaan hipotesis alternatif karena nilai t-hitung lebih kecil dari t-tabel, serta tingkat signifikansi lebih kecil dari alpha.
Kata Kunci: Media Sosial; Kepercayaan Publik; Terpaan Informasi; Pemilihan umum 2024
Referensi
Babbie, E. (2016). The Basic of Social Research. Thomson Higher Education.
Badan Pusat Statistik. (2023). Statistik Daerah Kota Pekanbaru 2023.
Bekafigo, M. A., & McBride, A. (2013). Who Tweets About Politics?: Political Participation of Twitter Users During the 2011Gubernatorial Elections. Social Science Computer Review, 31(5), 625–643. https://doi.org/10.1177/0894439313490405
Bennett, W. L., & Segerberg, A. (2012). The logic of connective action: Digital media and the personalization of contentious politics. In The Logic of Connective Action: Digital Media and the Personalization of Contentious Politics (Issue September). https://doi.org/10.1017/CBO9781139198752
Besley, T., & Ghatak, M. (2005). Competition and Incentives with Motivated Agents. The American Economic Review, 95(3), 616–636. http://www.jstor.org/stable/4132732
Bimber, B. (2019). Digital Media in the Obama Campaigns of 2008 and 2012: Adaptation to the Personalized Political Communication Environment. In Journal of information technology (Vol. 11, Issue 2, pp. 4294967295–150). Haworth Press, Inc. https://doi.org/info:doi/
Bode, L., & Vraga, E. K. (2015). In related news, that was wrong: The correction of misinformation through related stories functionality in social media. Journal of Communication, 65(4), 619–638. https://doi.org/https://doi.org/10.1111/jcom.12166
Bode, A., Álvarez, M., Ruiz-Villarreal, M., & Varela, M. M. (2018). Time series of hydrographic, chemical and primary production variables for a shelf station off A Coruña (NW Spain): 1989-2016. In Supplement to: Bode, A et al. (2019): Changes in phytoplankton production and upwelling intensity off A Coruña (NW Spain) for the last 28 years. Ocean Dynamics, 69(7), 861-873, https://doi.org/10.1007/s10236-019-01278-y. PANGAEA. https://doi.org/10.1594/PANGAEA.885413
DeVellis, R. (2016). Scale development: theory and applications, applied social research methods. Sage Publications. Thousand Oaks, 1–216.
Fowler, F. (2018). Survey Research Methods (5th edition).
Griffin, E., Ledbetter, A., & Sparks, G. (2019). A First Look at Communication Theory.
Guess, A., Nagler, J., & Tucker, J. (2019). Less than you think: Prevalence and predictors of fake news dissemination on Facebook. Asian-Australasian Journal of Animal Sciences, 32(2), 1–8. https://doi.org/10.1126/sciadv.aau4586
Howard, P. N., & Parks, M. R. (2012). Social Media and Political Change: Capacity, Constraint, and Consequence. Journal of Communication, 62(2), 359–362. https://doi.org/https://doi.org/10.1111/j.1460-2466.2012.01626.x
Klapper, J. T. (1960). The effects of mass communication. In The effects of mass communication. (pp. xii, 302–xii, 302). Free Press.
Kurniawati, A. E., Nugroho, A., & Naryoso, A. (2023). Pengaruh Terpaan Iklan Media Luar Ruang dan Frekuensi Diskusi Antar Tetangga Terhadap Perilaku Disiplin Protokol Kesehatan (Studi Deskriptif Kuantitatif Pada Masyarakat Kecamatan Pedurungan Kota Semarang). International Journal of Research in Science, Commerce, Arts, Management and Technology, 410–421. https://doi.org/10.48175/ijarsct-13062
Kwak, H., Lee, C., Park, H., & Moon, S. (2013). What is Twitter, a Social Network or a News Media? The 19th International Conference on World Wide Web, 1–7.
Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., Sloman, S. A., Sunstein, C. R., Thorson, E. A., Watts, D. J., & Zittrain, J. L. (2018). The science of fake news: Addressing fake news requires a multidisciplinary effort. Science, 359(6380), 1094–1096. https://doi.org/10.1126/science.aao2998
Mairita, D., & Abdullah, A. (2024). Media Sosial sebagai Media Kampanye Politik Menjelang Pemilu 2024 Social Media as a Political Campaign Media Ahead of the 2024 Elections. 10(1). https://doi.org/10.31289/simbolika.v10i1.11468
McQuail, D., & Windahl, S. (2013). Communication Models for the Study of Mass Communications. In Routledge Handbook of Applied Communication Research (Vol. 4, Issue 1).
Pennycook, G., & Rand, D. G. (2019). Lazy, not biased: Susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning. Cognition, 188(June), 39–50. https://doi.org/10.1016/j.cognition.2018.06.011
Sha, B. L. (2018). Editor’s essay: Identity and/in/of public relations. Journal of Public Relations Research, 30(4), 129–133. https://doi.org/10.1080/1062726X.2018.1534339
Sherif, M., & Hovland, C. I. (1961). Social judgment: Assimilation and contrast effects in communication and attitude change. In Social judgment: Assimilation and contrast effects in communication and attitude change. Yale Univer. Press.
Stern, P. C., Dietz, T., Abel, T., Guagnano, G. A., & Kalof, L. (2017). A value-belief-norm theory of support for social movements: The case of environmentalism. Human Ecology Review, 6(2), 81–97.
Sugiyono, D. (2018). Metode Penelitian Kuantitatif. ALFABETA.
Tandoc, E. C., Lim, Z. W., & Ling, R. (2018). Defining “Fake News”: A typology of scholarly definitions. Digital Journalism, 6(2), 137–153. https://doi.org/10.1080/21670811.2017.1360143
Tang, Q., Gu, B., & Whinston, A. (2012). Content contribution in social media: The case of YouTube. Proceedings of the Annual Hawaii International Conference on System Sciences, 4476–4485. https://doi.org/10.1109/HICSS.2012.181
Tenscher, J., Koc-Michalska, K., Lilleker, D. G., Mykkänen, J., Walter, A. S., Findor, A., Jalali, C., & Róka, J. (2015). The professionals speak: Practitioners’ perspectives on professional election campaigning. European Journal of Communication, 31(2), 95–119. https://doi.org/10.1177/0267323115612212
Traunmüller, F. &. (2009). Spheres of trust: An empirical analysis of the foundations of particularised and generalised trust. European Journal of Political Research, 48(6), 782–803. https://doi.org/https://doi.org/10.1111/j.1475-6765.2009.00849.x
Vowe, G., & Henn, P. (2016). Political Communication in The Online World. Routledge Handbook of Applied Communication Research, 4(1), 9–15.
Wells, C., Shah, D., Lukito, J., Pelled, A., Pevehouse, J. C. W., & Yang, J. H. (2020). Trump, Twitter, and news media responsiveness: A media systems approach. New Media and Society, 22(4), 659–682. https://doi.org/10.1177/1461444819893987
Woolley, S. C., & Guilbeault, D. R. (2017). Manufacturing Concensus. 5.